
 Thesycon Systemsoftware & Consulting GmbH®

Mobile Phone Windows

Driver Software

Technical Documentation

Version: 1.22
Date: 13 February 2013

Authors: Günter Hildebrandt, G.Hildebrandt@thesycon.de

Thesycon Systemsoftware & Consulting GmbH
Werner-von-Siemens-Str. 2
98693 Ilmenau
Germany
+49 3677 8462 0
http://www.thesycon.de

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 2 of 17

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 3 of 17

Contents

1 References ... 5

2 Introduction ... 6

3 Architecture ... 7

3.1 The Multi-Interface Driver ... 7

3.1.1 Installation of the Multi-Interface Driver ... 8

3.1.2 CD Less Driver Installation .. 8

3.1.3 Private Interface of the Multi-Interface Driver ... 8

3.1.4 Selective Suspend Support ... 8

3.1.4.1 Limitations of Selective Suspend .. 10

3.2 The CDC ACM Driver ... 11

3.2.1 Differences in the COM Emulation .. 11

3.2.2 Modified Plug And Play Behaviour ... 12

3.2.3 Lower Layer Flow Control ... 12

3.2.4 Optimized PPP protocol ... 12

3.2.5 Parameters .. 12

3.2.5.1 RequestTimeout ... 13

3.2.5.2 TimerInterval ... 13

3.2.5.3 useCtsFlowControl .. 13

3.2.5.4 ReadBufferSize .. 13

3.2.5.5 WriteBufferSize ... 13

3.2.5.6 ReadCircBufferSize ... 13

3.2.5.7 WriteCircBufferSize .. 13

3.2.5.8 VID .. 13

3.2.5.9 PID ... 13

3.3 CDC ECM Driver ... 13

4 Driver Software Installer ... 14

5 Supported Operating Systems ... 15

6 WHQL Certification .. 16

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 4 of 17

7 Driver Debugging .. 17

7.1 Event Log Entries ... 17

7.2 Enable Debug Traces .. 17

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 5 of 17

1 References

[1] USB MI IF, USB Multi-Interface Driver Interface, An interface to switch the device
configuration, Reference Manual, Thesycon

[2] USB CDC/ECM Class Driver, Reference Manual, Thesycon

[3] PPP Framer in PC CDC ACM Driver, Interface Enhancements and Device Driver Design
Documentation, Thesycon.

[4] USB Selective Suspend Interface, Interface Enhancements and Device Driver Design
Documentation, Version: 0.2, 6 October 2008

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 6 of 17

2 Introduction

This document is confidential und must not be passed to any third party without written
permission of Thesycon.

This document contains the design architecture of the driver stack, special features of the drivers
and some limitations. The driver stack consists of a Multi-Interface driver, a Communication
Device Class (CDC) Abstract Control Model (ACM) compliant driver and an ECM network
driver. The CDC ACM driver can be installed either as a modem driver or a COM port driver.
A special build version of this driver is compliant to the WMC OBEX model.

The features of the driver stack are modular. That means most of the features can be enabled
during compile time. Such features are marked as “optional” in this document.

The reader of this document should be familiar with the USB 2.0 Specification and with some
class specification like CDC , Mass Storage and WMC.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 7 of 17

3 Architecture

The following figure shows the architecture of the driver stack. The lower end of the driver
stack uses the API provided by the Microsoft USB bus driver. This bus driver API is available
for the three host controller types Universal Host Controller, Open Host Controller and
Enhanced Host Controller. On the upper edge the driver stack provides standard interfaces that
can be used by applications or system services.

User Mode (Win32)

Kernel Mode

USB Bus Driver API (MS)

Multi-Interface Driver

USB Bus Driver

USB Port Driver

API compliant to USB Bus driver

Legend

Device driver component

Module provided by
Microsoft or other vendor

Software interface

USB Bus

Mobile
Phone

Mobile
Phone

private Multi-Interface Driver API

COM Port
CDC ACM DriverCOM Port

CDC ACM Driver

COM Port
CDC ACM Driver

COM Port
(OBEX)

CDC ACM Driver

COM Port
CDC ACM DriverModem

CDC ACM Driver

COM Port
CDC ACM DriverCDC ECM

Driver

Demo
Application

System dialup
software

Terminal
Software

or
Applications

Terminal
Software

or
applications

Socket based
applications and

services

3.1 The Multi-Interface Driver

Windows contains a Multi-Interface driver for USB devices. But this driver has a number of
limitations. For that reason a replacement driver was developed. The new features of this driver
are:

• Correct handling of multiple USB interfaces

• Handling of Multi-Configuration devices (optional)

• Support for switching between USB configurations (optional)

• Exporting a private API defined in [1]. (optional)

• Handling Selective Suspend of the device (under development, optional)

• Fixing a bug of Microsoft’s bus driver stack to handle control requests in a correct way.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 8 of 17

3.1.1 Installation of the Multi-Interface Driver

The Multi-Interface driver is installed directly on top of the bus driver. Depending of the
architecture of the phone there may be a Microsoft driver that is installed on top of the device
node automatically and without user interaction. This can be the Multi-Interface driver provided
by Microsoft or if the case of a CD-less installation the Mass Storage Driver. In both cases a
special installation must be performed to replace the driver with the Multi-Interface driver.

3.1.2 CD Less Driver Installation

The phone can export a USB Mass Storage interface. The kernel mode drivers for such a
interface are preinstalled and WHQL certified for the complete Mass Storage Class. This
enables the installation of the kernel mode driver automatically. The file system on the Mass
Storage device can be designed in such a way, that an auto-run option is activated and the
installation of the PC software is started if the phone is connected the first time to a computer.
Note: The auto run feature of Windows can be disabled by the user.

This architecture uses the possibility to export a set of USB configurations. If the CD less
software installation is used, the first USB configuration contains one USB interface that is
compliant to the USB Mass Storage class. The Microsoft’s driver stack activates always the first
USB configuration.

The software installation copies the installer to a temporary location on the hard disk and
replaces the Mass Storage driver by the Multi-Interface driver. The Multi-Interface driver
activates a different USB configuration that contains the functional interfaces of the phone. If
the Multi-Interface driver has been installed successfully, it is loaded automatically if the phone
is connected or turned on the next time. If the phone is connected to a PC, where the software is
not installed, the installation process starts from the beginning.

The driver installation process requires administrator privileges.

The CD less installation is optional and must be supported by the phone.

3.1.3 Private Interface of the Multi-Interface Driver

The private interface of the Multi-Interface driver is described in detail in [1]. It provides the
following features:

• Get the kernel driver information

• Get the currently activates USB configuration

• Set an USB configuration

There is a small command line demo application that can be used to switch the USB
configuration of the device.

This interface is optional and required by the CD-less installation.

3.1.4 Selective Suspend Support

The selective suspend feature is described in [4]. It enables the driver to switch the device in a
selective suspend state if it is not used. On the USB bus the Suspend state is entered. This
feature enables the device to reduce the power consumption. The device must not change any
state that is visible from the PC application if it enters suspend and returns to working state.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 9 of 17

The main part of the Selective Suspend feature is implemented in the Multi-Interface driver. If
the driver detects that the device and all client drivers are in an idle state the state transition to
selective suspend is started. The driver supports two ways to trigger the state transition:

• With a idle timer in the MI driver after a idle period

• A message from the device on a USB interrupt pipe

The following picture shows the state diagram used for selective suspend:

Selective Suspend

Working

Enter

Selective Suspend

Device

Selective Suspended

Device

Wakeup

Idle

Busy

Cancel IdleTimer

Set Idle TimerRequest arrives

All Requests
completed

Idle timer fires
or

device requests SS
and

Idle Condition

D2 State is
entered

No Idle Condition
or

Remote Wakeup

D0 State is
entered

A request includes:

- Any non bulk or interrupt IN request from a client driver

- System PnP Requests

- System Power Management requests

Behavior:

- Process all requests normal

Actions:

- process all queued requestes

- Handle sub-states for the idle timer

Behavior:

- queue all requests

Actions:

- Abort all USB IN IRP's

- wait for completion

- Check or send the Wake IRP

- Request device state D2

- resubmit Wake IRP

Behavior:

- queue all requests

Actions:

- Wait at least a given time (200 ms)

- Check for queued requests

Behavior:

- queue all requests

Actions:

- Request device state D0

Selective Suspend State Transition

Condition for state transition

State

Behavior and actions

Idle Condition:

- No request is pending, queued or in progress

- The device is in PnP state working

- System Power State is D0

- No System Query Power request

- Depending on the policy open/close state of client drivers

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 10 of 17

The state transition to selective suspend can be blocked if either the CDCACM is driver is
opened or if the Network adapter reports a connected Network Cable.

The protocol that is used to communicate with the device is described in [4].

As soon as the transition to selective suspend has been started all requests from client drivers
and system notifications are stored in queues. If a request arrives in a queue the transition to a
working state is started. Because all client driver requests and system notifications are handled
in working state, the selective suspend is transparent to the client drivers.

To enter selective suspend the MI driver has to abort all pending requests. If all child drivers are
idle the only pending requests are URB’s with read requests on bulk or interrupt IN pipes. After
all data traffic has been stopped the MI driver aborts all these requests. There is no risk of any
data lose. The MI driver completes the requests with status success and a length 0. All client
drivers must handle such an empty request without error and resubmit the IRP. During
resubmission the IRP’s are stored in a queue. A read request on a bulk or interrupt pipe is not
handled as an activity that marks the device as busy.

The device can wake the MI driver with Remote Wakeup if it wants to send data to the PC.

The state transition to suspend and back to working state takes some time. The time results from
the handling of internal requests in the driver and the system as well as data exchange between
the driver and the device. It is difficult to make assumptions about the time schedule. This is a
problem for the dimension of the buffer size inside the phone to keep data stored until the PC
becomes ready to read them.

3.1.4.1 Limitations of Selective Suspend

During the tests we have encountered some problems that are caused by the system software.
The following paragraphs contain a short explanation of the observed problems.

Because of the limitation of selective suspend in Windows XP and Vista Selective suspend is
supported in Windows 7 and 8, only. On other systems the selective suspend state is never
entered.

3.1.4.1.1 IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION

On Windows XP is required to use an IRP with the function code
IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION to trigger the selective suspend
state. The IRP registers a call back function. The call back function is called with a delay
between 500 and 1000 ms. This delay is a problem if the device should be switched to selective
suspend a short time after a trigger event has been occurred.

3.1.4.1.2 Short USB Suspend period

The suspend period on the USB is shorter that the time period that can be measured between the
call to the completion routine of the device power down IRP and the request for the wake up
IRP. This effect was observed with the usage of the IRP
IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION. To make sure that the device
sees the suspend state on USB the driver must keep the selective suspend state for a given time
period even if in the mean time a new request has been arrived. This time period delays the
wakeup process and the handling of the request. It is difficult to define a reasonable time period
for this time interval.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 11 of 17

3.1.4.1.3 Problem after System Power Down

If the selective suspend is triggered some seconds after system power down (Sleep or StandBy
state) it does not work. This seems to be a bug in the Microsoft bus driver. The selective
suspend is blocked for some seconds after system power down.

3.1.4.1.4 Call Back is not called

On Windows XP SP2 and SP3 the call back function registered with
IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION is not called if an external USB
2.0 hub is connected between the PC and the device. It seems to be a bug in the Microsoft bus
driver stack. There is no known workaround for this problem. For that reason the selective
suspend state is never entered, if a external hub is used.

3.2 The CDC ACM Driver

This driver can be used in one of the following ways:

• As a COM port driver in the device class Ports (COM & LPT)

• As a Modem in the device class Modems

• As an OBEX protocol driver compliant to the WMC specification.

The binary driver for the usage in the Ports class and in the Model class is the same. The
relation to the device class is defined in the INF file. The OBEX driver is an build option. The
OBEX protocol does not used the signalling of serial status lines. For that reason this interface
uses only two bulk pipes.

Each of the interfaces is optional but it makes sense to have at least one interface to access the
phone.

3.2.1 Differences in the COM Emulation

The Window COM port API is very close to the hardware of a UART. That means the value of
the UART status register can be requested by the user. Some other features are very close to the
UART behaviour. For that reason the driver behaves in some points different to the Microsoft
driver, that is part of the system and serves the UART based COM ports.

• Flow control is always handled with the USB flow control.

• The status lines are transmitted and indicated to the device and the COM port. But they
do not have a meaning for flow control in the driver.

• A char submitted with TransmitCommChar is transmitted as a normal char.

• The ReadIntervalTimeout is handled on the time difference of USB blocks.

• The Software does not support Xon/Xoff handshake. It can be set by software, but the
driver will never send a Xon or Xoff char. The flow control is done by USB
(NAK/ACK) tokens.

• The driver does never set or clear the signals RTS or DSR. The application can control
these signals.

• The driver does not support 5, 6, or 7 data bits.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 12 of 17

• The content of the internal FIFO’s is not preserved, if a new FIFO size is set.

3.2.2 Modified Plug And Play Behaviour

A COM that is part of the operating system typically never disappears. A lot of application like
Hyperterminal that are using COM ports are not Plug and Play compliant. That means they does
not detect the removal of a COM port and close it. The Microsoft driver as well as the CDC
ACM COM port driver indicates this Plug and Play events to the user mode.

On Windows 2000 we have observed, that the Windows FAX client is also not PnP compliant.
If it is configured to receive FAX from a virtual COM port and the COM port is removed, it
stops receiving FAX until the PC is restarted.

For these reasons we have enhanced the user interface in the following way. If the device is
removed and the COM port is used, the driver keeps the handle of the application valid. It sends
the Plug and Play event “Device is removed” to the user mode. A PnP compliant application can
close the interface. If the application closes the handle the driver is unload. If the device with
the same serial number is connected to the PC the driver connects the application handle to the
phone.

Requests that are sent in the time where the phone is not connected, are stored in the circular
buffer of the driver. These requests are sent if the device is connected. Timeouts for send and
read requests are still active.

This feature enhances the compatibility of the driver interface to not Plug and Play compliant
applications. It has no negative influence to WHQL test or to Plug and Play compliant
applications.

3.2.3 Lower Layer Flow Control

The USB protocol wastes a lot of band width if the flow of the data in OUT direction is blocked
by the device for a long time period. To avoid this an additional flow control is added to the
CDC ACM driver. The driver stops sending data if the phone signals a full buffer in OUT
direction. If the buffer in the phone becomes empty the phone enables the data flow again.

This feature is triggered by the phone and is optional.

3.2.4 Optimized PPP protocol

The PPP protocol contains an escaping of characters. This is a CPU consuming task in the
phone. To save CPU power in the phone the CDC ACM driver can perform the escaping of the
characters instead of the phone. This feature uses a special protocol defined in [3]. The phone
triggers the process of PPP escaping in the driver.

This feature is optional.

3.2.5 Parameters

The CDC ACM driver has some parameters that can be configured with the INF file or
temporary in the registry.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 13 of 17

3.2.5.1 RequestTimeout

This value defines the request timeout for any class or vendor request on EP0. When the device
does not answer to the request in the given timeout the request is cancelled and traded as failed.

3.2.5.2 TimerInterval

Contains the period that is used to check the timeout setting for read and write operations on the
COM port. This value is the granularity for the timeout settings on the COM port.

3.2.5.3 useCtsFlowControl

If this parameter is grater than 0 the driver does not send data when the device signals CTS
inactive.

3.2.5.4 ReadBufferSize

Is the buffer size used for read operation on the bus.

3.2.5.5 WriteBufferSize

Is the buffer size used for write operation on the USB bus.

3.2.5.6 ReadCircBufferSize

Is the initialize size of the circular buffer inside the driver. The application can set a different
value with SetupComm().

3.2.5.7 WriteCircBufferSize

Is the initialize size of the circular buffer inside the driver. The application can set a different
value with SetupComm().

3.2.5.8 VID

Is an encrypted value that contains the VID that is valid for the driver operation.

3.2.5.9 PID

Is an encrypted value that contains the PID that is valid for the driver operation. The checking of
the VID/PID is optional.

3.3 CDC ECM Driver

The CDC ECM (Ethernet Control Model) driver is a connection less network card driver that
implements the NDIS protocol defined by Microsoft. The implemented Media type is Ethernet.
The driver is installed in the Network Adapters class. The driver is optional. A detailed
description is given in the reference manual [2].

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 14 of 17

4 Driver Software Installer

The driver software installer is based on the NSIS installation platform. It is an installer with a
graphical user interface. It supports the language English. Other languages can be added on
request if the customer can provide the translated texts.

The driver installer performs the following actions:

• Check of the supported operating system

• Check of the administrator privileges

• Deleting all old installations: device nodes and pre-installed INF files

• Pre-Installing of the required drivers

• Support for WHQL certified drivers

• Creation of log files

• Creation of an uninstall entry in the Add/Remove Programs dialog

• Support for CD less installation (optional)

• Silent installation without user interface

The installation of the kernel drivers require a special installation program. It is not reliable to
let the user install the drivers with the system provided options.

The installer is optional.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 15 of 17

5 Supported Operating Systems

The driver stack supports the following operating systems with the most current service packs:

• Windows XP 32 bits

• Windows XP 64 bits

• Windows Vista 32 bits

• Windows Vista 64 bits

• Windows 7 32 bits

• Windows 7 64 bits

• Windows 8 32 bits

• Windows 8 64 bits

The support for each operating system is optional.

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 16 of 17

6 WHQL Certification

The driver stack has passed the WHQL test several times in the “unclassified” category
successfully. How ever the DTM test bench is frequently updated by Microsoft. For that reason
the test must be repeated for each driver release.

The delivered driver does not have a WHQL certificate by default. The WHQL tests must be
performed either by Thesycon or by the customer it self. If Thesycon should perform the tests
this must be defined in a contract.

The WHQL test can be performed for the following operating systems:

• Windows Vista 32 bits

• Windows Vista 64 bits

• Windows 7 32 bits

• Windows 7 64 bits

 Thesycon Systemsoftware & Consulting GmbH

CDCACM_driver.doc Page 17 of 17

7 Driver Debugging

7.1 Event Log Entries

If the driver detects a major problem during the startup process or when the COM port is opened
it creates an entry in the event log of the system. The event log can be opened with the context
menu on ’My Computer’ -> Manage -> Event Viewer -> System. The entries are created in the
category error.

7.2 Enable Debug Traces

The setup_dbg installer contains debug version of the drivers. Execute the installer to install the
debug version of the drivers. The debug version of the driver can generate text messages on a
kernel debugger or a similar application to view the kernel output. These messages can help to
analyze problems.

The output of the driver can be controlled by a registry key:
\HKEY_LOCAL_MACHINE\System\CurrentControlSet\services\ YOUR_SERVICE_NAME.
YOUR_SERVICE_NAME is the name of the service name defined in the .INF file. It is
typically the name of your driver. Edit the DWORD value key TraceMask. The messages are
grouped in special topics. Each topic can be enabled with a bit in the debug mask. To enable the
messages on bit 5 the DebugMask must be set to 0x00000020. The DebugMask contains the
or’ed value of all active message bits. See the text files “trace_xxx.txt” in the doc folder to see
the meaning of each bit.

Use DebugView to collect the traces. Debug View is a free tool that can be downloaded from
Microsoft.

On Windows Vista an later you have to enable the kernel debug traces by adding a registry key.
Create the key:

“HKLM\CurrentControlSet\Control\Session Manager\Debug Print Filter”.

Under this key create a DWORD value with the name “DEFAULT” and set the value to 0x0f.

After you have done this reboot the PC. This is required to activate the system debug filter.

Run DebugView with Administrator privileges. It installs a kernel driver during start up and it
cannot collect kernel traces if the driver is not loaded. Enable the kernel traces in the menu.

